编写教案可以帮助教师更好地把握教学节奏,富有趣味的教案能够让学生更享受学习过程,下面是满满范文网小编为您分享的商的近似数的教案7篇,感谢您的参阅。
商的近似数的教案篇1
课题四:
商的近似数
教学内容:
教科书第23页的例7和“做一做”中的题目。
教学目的:
1、使学生学会根据实际需要用“四舍五入”来求小数的近似数.
2、提高学生的比较、分析、判断的能力。
教学过程:
一、复习
1.按“四舍五入法”,将下列各数保留一位小数.
3.724.185.256.037.98
2.按“四舍五入”法,将下列各数保留两位小数.
1.4835.3478.7852.864
7.6024.0035.8973.996
做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.
二、新课
1.教学例6.
教师出示例6,要求根据书上提出的信息列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)
教师问:保留一位小数,应该等于多少?表示计算到“角”。
教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)
2.做第23页“做一做”中的题目.
教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的`做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)
教师问:你解题时用了什么技巧?
三、巩固练习
1、求下面各数的近似数:
3.81÷732÷42246.4÷13
2、书上的作业。
商的近似数的教案篇2
教学目标
知识与技能:使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。
能力目标用“四舍五人法”截取积是小数的近似值的一般方法。
情感目标情感态度与价值观:培养学生解决实际问题的能力。
教学重难点
根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。
教学过程
一、激发:
1、口算。 0.8×2= 6×0.9= 5×0.5 = 40×0.2= 7×0.8= 25×4 = 300×0.4= 1.5×0.8=
2、用“四舍五人法”求出每个小数的近似数。(投影出示)
保留一位小数保留两位小数保留三位小数
4.51692
328.9604
思考并回答:(根据学生的回答填空)
(1)怎样用“四舍五人法”将这些小数保留一位小数或两位小数,取它们的近似值? (2)按要求,它们的近似值各应是多少?
3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)
二、合作探究
谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:
1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少个嗅觉细胞?
2、读题,找出已知所求。
3、生列式,板书:0.049×45
4、生独立计算出结果,指名板演并集体订正。
5、引导学生观察、思考:
(1)积的小数位数这么多!可以根据需要保留一定的小数位数。
(2)保留一位小数,看哪一位?根据什么保留?
(3)横式中的结果应该怎样写?
6、专项练习:
得数保留一位小数0.8×0.9 ≈
得数保留两位小数1.7×0.45≈
三、拓展应用
1、按要求完成下面各题
2、小刚的体重是21.5千克,
他爸爸的体重是他的`3.3倍。
小刚的爸爸的体重大约是多少千克?
(得数精确到十分位)
3、两个因数的积保留两位小数的近似数是3.58,准确数可能是下面哪个数?
3.059 3.578 3.574 3.583 3.585
四、总结
谁来小结一下今天所学的内容?
五、作业布置
p.13页2题
商的近似数的教案篇3
教学目标
1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数.
2.使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.
教学重点
求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数.
教学难点
使学生能够区别求近似数与改写求准确数的方法.
教学步骤
一、铺垫孕伏.
1.把下面各数省略万后面的尾数,求出它们的近似数.(卡片出示)
986534 58741 31200
50047 398010 14870
2.下面的□里可以填上哪些数字?
32□645≈32万 47□05≈47万
学生填完后,说一说是怎么想的.
二、探究新知.
1.导入新课.
我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)
2.教学例1:求一个小数的近似数.
(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用“四舍五入法”保留一定的小数位数.
(2)出示例1:2.953保留两位小数、一位小数和整数,它的近似数各是多少?
教师提问:保留两位小数,要看哪一位?怎样取近似数?
使学生明确:2.953保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数2.95.
学生讨论:2.953保留一位小数和整数,要看哪一位?怎样取近似数?
使学生明确:2.953保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数3.0. 2.953保留整数就要看十分位,十分位上满5,向前一位进一得到3.
分组讨论:保留一位小数3.0十分位上的“0”能不能去掉?为什么?
教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……
(3)求下面小数的近似数.
3.781(保留一位小数)
0.0726(精确到百分位)
(4)讨论分析:3.0和3数值相等,它们表示精确的程度怎样?
①教师出示线路图:(投影出示)
②引导学生小组讨论交流:
使学生明确保留一位小数是3.0,原来的长度在2.95与3.05之间.保留整数为3,原来的准确长度在2.5与3.5之间,所以3.0比3精确的程度高一些.也就是小数保留的位数越多,精确的程度越高.
(5)小结.
教师提出问题:求一个小数的近似数应注意什么?
引导学生讨论知道:求一个小数的近似数要注意两点:
①要根据题目的要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是合还是人.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉.
(6)分组合作学习,填表.
在下表的空格里按照要求填出近似数.
保留整数
保留一位小数
保留两位小数
保留三位小数
3.教学例2:1999年我国生产家用电风扇61581400台.把这个数改写成用“万台”作单位的数.
(1)教师提问:把61581400台改写成用“万台”作单位的数,应该用多少来除?缩小多少倍?小数点应该向哪个方向移动几位?
(根据学生回答教师板书:61581400台=6158.14万台)
教师总结说明:把较大数改写成用“万”作单位的数,只要在万位的右边,点上小数点,在数的后面加写“万”宇.
(2)做一做.
把248000改写成用“万”作单位的数.
4.教学例3:1999年我国生产水泥573000000吨.把这个数改写成用“亿吨”作单位的数.再保留一位小数.
(1)学生讨论:把一个数改写成用“亿吨”作单位的数,应该怎么办?
学生独立改写成573000000吨=5.73亿吨≈5.7亿吨,并说出改写的方法.
教师提问:如果要求保留一位小数怎么办?
启发学生自己得出≈1.4亿吨,并说出保留一位小数的方法.
教师总结说明:把较大数改写成用“亿”作单位的'数,只要在亿位的右边,点上小数点,在数的后面加写“亿”字.如果小数位数比较多,可以根据需要保留前几位小数.
(2)“做一做”第2题.
把750000000改写成用“亿”作单位的数.
“做一做”第3题.
把34562800000改写成用“亿”作单位的数后,保留两位小数.
5.区别对比.
例2、例3的学习中,有的数需要把它改写成以“万”或“亿”作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?(引导学生讨论)
三、巩固发展.
1.填空.
求一个小数的近似数,要根据需要用( )法保留小数数位.保留整数,表示精确到( )位;保留一位小数表示精确到( )位;保留两位小数表示精确到( )位……
2.填空.
近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了( )位,6表示精确到了( )位,所以6.0后面的“0”不能丢掉.
3.下面各小数在哪两个相邻的自然数之间?它们各近似于哪个自然数?
5.28 12.71 4.86 7.05
4.按照四舍五入法写出表中各小数的近似数.
保留整数
保留一位小数
保留两位小数
保留三位小数9.9564
0.9053
1.4639
5.(1)1999年北京市从事工程技术的人员共120100人,改写成用“万人”作单位的数.
(2)1999年我国出版图书7320000000册(张),改写成用“亿册(张)”作单位的数.
四、全课小结.
今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似.要用“四合五入”法保留小数位数.要注意保留小数位数越多,精确程度越高.
五、布置作业.
1.把下面各小数四舍五入.
(1)精确到十分位:3.47 0.239 4.08
(2)精确到百分位:5.344 6.268 0.402
2.把下面各数改写成用“亿”作单位的数.
(1)保留一位小数:3672800000 648500000
(2)保留两位小数:4853900000 288160000
板书设计
求一个小数的近似数
例1 2.95保留二位小数,一位小数和整数,它的近似数各是多少?
2.953≈2.95
2.953≈3.0
2.953≈3
求一个小数的近似数要注意:
①要根据题目的要求取近似值.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉.
例 2 61581400台=6158.14万台
在万位右边点上小数点,在数的后面加写万字.
例3 573000000吨=5.73亿吨 .5.7亿吨
在亿位右边点上小数点,在数的后面加写亿字.
数学教案-求一个小数的近似数
商的近似数的教案篇4
教学目标:
1.使学生掌握求小数乘法的积的近似数的方法。
2.使学生经历求小数乘法的积的近似数的过程。
3.使学生在解决实际问题中,进一步体会数学与生活的密切联系,培养实践能力的.灵活性。
教学重点:
掌握求小数乘法的积的近似数的方法。
教学难点:
根据要求与实际需要取积的近似数。
教学准备:
多媒体课件。
教学过程:
一、基础训练
1.436保留整数、一位小数、两位小数分别是多少?
15.7394精确到个位、十分位、百分位、千分位分别是多少?
一般用什么方法取近似数?怎样用四舍五入法求出这些近似数?
二、导入新课
师:同学们你们知道什么单位的嗅觉最灵敏吗?
生:狗,人们用狗来做侦探,看家。
三、进入新课
师出示教材11页情境图
师:从图上你都看到了什么?
生:描述画面内容。
师:是呀,狗狗使用它灵敏的嗅觉发现坏人的。
投影出示例6
生:读题,理解题意。题中得知生活中和多地方不需要准确值,要近似数。
1.尝试题
师:怎样计算狗的嗅觉约有多少亿个嗅觉细胞呢?(求0.049的45倍是多少。)
2.自学课本
有困难的同学借助课本来学习
3.尝试练习
生:独立完成在练习本上。指名学生板演。
0.049×45≈2.2(亿个)
4.学生讨论
师:充分展示学生出现的情况,组织学生讨论,探究。
强调:横式后面写的是近似数所以要用约等号而不用等号。
明确:保留一位小数,看哪位,根据什么保留?(看百分位,满5舍去后向前一位进一;小于5就直接舍去)保留两位小数呢?
生:看千分位是几,千分位上是5舍去后向前一位进一。
讨论:怎样求积的近似数?
5.教师讲解
小结:先求积,看保留小数的后一位,用“四舍五入法”取近似数,横式得数要用约等号。
四、巩固练习
1.11页做一做第1题.
求近似数要注意什么?(计算准确,看清题目要求几位小数,积中小数点的位置)
2.11页做一做第2题.
明确为什么保留两位小数?(生活中没有比分更小的钱币)
五、课堂作业
练习三1~3题。
六、小结:谈谈收获。
练习题
1.计算下面各题。
0.8×0.9(得数保留一位小数)
1.7×0.45(得数保留两位小数)
2.一种大米的价格是每千克3.85元,买2.5千克应付多少钱?
练习三
1.按要求保留小数数位
(1)保留一位小数
1.2×1.40.37×8.43.14×3.9
(2)保留两位小数
0.86×1.22.34×0.151.05×0.26
2.一幢大楼有21层,每层高2.84米。这幢大楼约高多少米?(得数保留整数)
3.世界上的一台电子计算机很大,它的质量相当于6头5.85吨重的大象。这台计算机有多重?(得数保留整数)
商的近似数的教案篇5
教学内容
课本73页例1
教学目标
1、使学生掌握求一个小数的近似数的方法,能正确地安需要用“四舍五入法”保留一定小数的位数,理解保留小数位数越多精确程度越高。
2、通过旧知迁移新知的方法,让学生掌握知识。
3、培养学生的类推能力,增进学生对数学的理解和应用数学的信心。
教学重难点
求一个小数的近似数的方法
理解保留小数位数越多,精确的程度越高。
教学过程
一、复习
1、把下面各数省略万位后面的尾数求出它们的近似数。
734562 38460 50074 10274
让一位学生说出求近似数的方法。
2、下面的空格里可以填哪些数字。
32()546≈ 47()03≈
师:这是我们学过的求一个整数的近似数,那么求一个小数的近似数不知道同学们有没有信心掌握好呢?今天我们就来学习求一个小数的近似数。板书课题:求一个小数的近似数
二、导入新课
1、课件显示例1图。
他们是怎样得出豆豆身高的近似数的?
(1)保留两位小数
师板书:0.984≈0.98保留两位小数
用什么方法?(四舍五入法)根据学生回答师板书:四舍五入
引导学生说出:如果保留两位小数就要把第三位数省略,因为第三位小数小于5,所以舍去。
(2)保留一位小数
师板书:0.984≈
让学生独立完成,指名几位不同做法的学生上黑板写:0.984≈0.9,0.984≈1,0.984≈1.0.学生通过观察比较发现:在表示近似数时,小数末尾的0不能去掉。
接着让做对的同学谈自己的想法:保留一位小数,就看第二位小数,第二位小数上的数字8大于5,向前一位进一,末尾的0不能去掉。
(3)保留整数。
师板书:0.984≈
学生独立完成,集体订正,说出想法。
小结:求近似数时,保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位......
三、巩固练习
1、课本74页做一做。
2、课件显示填空题。
3、课本练习十二第一题。
4、课件显示判断题。
四、总结
这节课你有什么收获?
五、作业
课本练习十二第2、5、6题。
课后反思:
在上本节课之前,已经观看了几次本班学生的学习过程,对学生们大概有所了解,发现个别学生的纪律稍有点散漫。为了使全班同学们能够进入一个好的积极的学习状态,我并不急于先上课,而是把那些慢悠悠的,表现不佳的同学的积极性做了调动,同学们的上课精神开始集中了,但是已经占用了上课的三分钟时间。
求一个小数的近似数是在学生掌握了求整数的近似数的基础上进行的,其方法基本相同。因此我设计了求整数的'近似数的复习题并让学生说出自己的想法,为学习新知做好铺垫。在探求新知部分同学们掌握较好,但是因为时间关系,原先设计的练习题未能全部完成,有些遗憾。
纵观整堂课,发现仍然存在一些有待改进的地方。
1、授课语言不够生动灵活,过于单调生硬,未能更好地激发学生的学习兴趣,学生的学习热情还不够高。
2、时间安排不够合理,造成提供学生自我展现的机会较少,未能达到充分锻炼学生表达能力的效果,造成有个别学生对求一个小数的近似数的方法理解得不够深刻。
3、课前准备不够十分充足,造成对时间分配地把握不够准确,而且练习量相对少了一些,未能更好的巩固本节课的教学知识。
上好一节不容易,不但需要教师有深厚的理论功底,而且还得掌握有效的教学方法与技巧。
商的近似数的教案篇6
一、教学目标
(一)知识与技能
通过具体实例体会求商的近似数的必要性,感受取商的近似数是实际应用的需要。
(二)过程与方法
掌握用“四舍五入”法截取商的近似数的一般方法。
(三)情感态度和价值观
在解决相关实际问题时能根据实际情况合理取商的近似数,培养学生探索数学问题的兴趣和解决实际问题的能力。
二、教学重难点
教学重点:掌握用“四舍五入”法截取商的近似数的一般方法。
教学难点:理解求商的近似数与积的近似数的异同。
三、教学准备
多媒体课件。
四、教学过程
(一)复习旧知,揭示课题
1.按照要求写出表中小数的近似数。(ppt课件出示题目。)
2.求出下面各题中积的近似值。(ppt课件出示题目。)
(1)得数保留一位小数:2.83×0.9;
(2)得数保留两位小数:1.07×0.56。
3.揭示课题:我们已经会求小数乘法中积的近似数了。在小数除法中,常常会出现除不尽的情况,或者虽然除得尽,但是商的小数位数比较多,实际应用中并不需要这么多位的小数,这时就可以根据需要用“四舍五入”法保留一定的`小数位数,求出商的近似数,这就是我们这节课要探究的内容。(板书课题:商的近似数。)
?设计意图】通过复习求一个小数的近似数,为新课学习做好铺垫。通过复习求积的近似数,为后面将求积的近似数和求商的近似数进行对比做好准备,也利于引出课题。在引出课题的同时,让学生知道求商的近似数的必要性。
(二)创设情境,自主探究
1.教学教材第32页例6。
(1)出示例6题目信息。(ppt课件演示。)
(2)教师引导学生根据问题中的信息自主列式计算,并指名板演。(教师巡视,了解学生的计算情况,给予适当指导。)
(3)当学生除到商为两位小数、三位小数……还除不尽时,教师适时引导学生思考:在计算价钱时,通常只精确到“分”,这里的计量单位是“元”,那应该保留几位小数?除的时候应该怎么办?(教师适时板书或ppt课件演示。)
①学生回答后,修改自己的计算过程,得到19.4÷12≈1.62(元)。
②订正后,教师引导学生明确:商保留两位小数时,要除到第三位小数,再将第三位小数“四舍五入”。
(4)教师进一步引导学生思考:如果要精确到“角”,又应该保留几位小数?除的时候应该怎么办?
①学生独立完成。
②订正后,教师引导学生明确:商保留一位小数时,要除到第二位小数,再将第二位小数“四舍五入”。(教师适时板书或ppt课件演示。)
(5)教师组织学生交流讨论。
①通过上面的两次计算,想一想怎样求商的近似数?
②教师引导学生小结:求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。(教师适时板书或ppt课件演示。)
(6)介绍求商的近似数的简便的方法:求商的近似数时,除到要保留的小数位数后,可以不用再继续除,只要把余数同除数作比较。
①如果余数小于除数的一半,就说明下一位商小于5,直接舍去;(ppt课件演示例6精确到“角”的计算过程。)
②如果余数等于或大于除数的一半,就说明下一位商等于或大于5,要在已求得的商的末一位上加1。(ppt课件演示例6精确到“分”的计算过程。)
?设计意图】复习已唤起了学生用“四舍五入”法取近似数的知识经验,这里通过买羽毛球的情境,让学生经历求商的近似数的过程,体会和总结求商的近似数的一般方法。同时也结合实例体会了商的近似数的实际意义。
2.对比求商的近似数与求积的近似数的异同。
(1)对比求“1.07×0.56”的积的近似数与求“19.4÷12”的商的近似数,想一想,它们在求法上有什么相同和不同?(ppt课件演示。)
(2)思考:求商的近似数与求积的近似数有什么相同和不同?(ppt课件演示。)
(3)引导学生交流、概括。(ppt课件演示。)
①相同点:都是按“四舍五入”法取近似数。
②不同点:求商的近似数时,只要计算到比要保留的小数位数多一位就可以了;而求积的近似数时,则要计算出整个积后再取近似数。
?设计意图】通过例题与复习题的对比,让学生明确求商的近似数与求积的近似数的异同,既突破了教学难点,又让学生形成了较完整的认知结构。
(三)巩固应用,内化方法
1.基本练习。
(1)完成教材第32页“做一做”。
①学生独立完成,教师巡视,适时指导。
②集体订正,着重让学生明确每一小题除到第几位小数,然后怎么取近似数。
(2)完成教材第36页练习八第3题。
①学生独立练习,教师巡视,适时指导。
②组织学生交流、比较取近似值的各种方法,看哪种方法既快捷又简便。明确从全局出发只列一个竖式,看最多保留三位小数,就先直接除到第四位小数,然后再一位小数、两位小数、三位小数地进行保留,这样既简便又不易出错。
2.提高练习。
判断对错。(对的在括号里打“√”,错的在括号里打“×”。)
(1)求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。( )
(2)求商的近似数时,精确到百分位,就必须除到万分位。( )
(3)求商的近似数和求积的近似数一样,必须先求出准确数。( )
3.解决问题。
(1)完成教材第36页练习八第2题。
①引导学生理解题意,让学生说一说要想知道“是上午铺路的速度快,还是下午铺路的速度快”,该怎么办?(要分别计算出上午和下午铺路的速度,并比较大小。)
②学生独立计算,教师巡视,了解学生保留不同小数位数的取值情况。
③组织学生交流各种不同保留小数位数的情况,体会只要能比较出速度的快慢,保留的小数位数越少越简单,明确取近似值时可以根据实际情况确定精确度,灵活选择保留的位数。
(2)完成教材第36页练习八第4题。
①引导学生审题,并让学生明白当题目中没有明确保留小数位数的要求时,一般要保留两位小数。
②引导学生自觉、灵活地进行简便计算(将“1.9÷0.045”转化为“3.8÷0.09”),并完成第(1)问。
③完成第(2)问:提出其他数学问题并解答。
?设计意图】练习设计注意了练习的针对性和层次性,注重了让学生通过练习内化求商的近似数的方法。同时对解决问题的技巧进行了适时点拨和指导,发展了学生思维的深刻性和灵活性。
(四)课堂小结,畅谈收获
这节课你学会了什么?有什么收获?
(五)作业练习,及时巩固
1.课堂作业:教材第36页练习八第1题。
2.课外作业:教材第36页练习八第5题。
商的近似数的教案篇7
教学内容:p23例7、做一做,p26练习四第10、11题。
教学目的:
1、使学生学会用“四舍五入”法取商的近似数。
2、培养学生的实践能力和思维的灵活性,培养学生解决实际问题的能力。
3、引导学生根据生活中的实际情况多角度思考问题,灵活地取商的近似数。
教学重点:知道为什么要求商的近似数,会用“四舍五入”法取商的近似数。
教学难点:能根据生活中的实际情况多角度思考问题,灵活地取商的近似数。
教学过程:
一、复习
1.按“四舍五入法”,将下列各数保留一位小数.
6。03 7。98
2.按“四舍五入”法,将下列各数保留两位小数.
8。785 7。602 4。003 5。897 3。996
做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.
3。 计算0。38*1。14(得数保留两位小数)
二、新课
1.教学例7:
教师出示例6,口述图意, 再列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候要除到哪一位?为什么?(应 该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)横式应该怎样写出?教师板书。
教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?
教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)
我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点?
2.p23做一做:
教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)
师:解题时用了什么技巧?
三、巩固练习
1、求下面各题商的近似数:
3.81÷7 32÷42 246。4÷13
2、p26第10题第(1)题。
四、作业:p26第10题第(2)题、第11题。
课后小记:
本以为求近似数是教学难点, 所以在新授前安排了大量相关知识的复习。但在实际教学中才发现计算才是真正的教学难点, 由于例题及做一做中所有习题全是小数除以整数, 所以当作业中出现小数除以小数计算时, 许多学生装都忘记了"一看, 二移"的.步骤。 所以在设计巩固练习时应增加小数除以小数的练习。
其次我根据学情补充介绍了一种求商近似数的简便方法。 即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明 要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清 了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。
商的近似数的教案7篇相关文章:
★ 美术蜗牛教案7篇
★ 认识圆形教案7篇
★ 认识数字教案7篇
★ 钱教案7篇