教案中融入的文化元素可以增加课程的趣味性,丰富学生的文化视野,教案直接影响课堂教学的顺利进行,教师应予以重视,以下是满满范文网小编精心为您推荐的八年级下册数学教案6篇,供大家参考。
八年级下册数学教案篇1
一、 指导思想
教学中落实新课改,体现新理念,培养创新精神。通过数学课的教学,使学生具有从事社会生产实践必须的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
?一》八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。我任教的班级大部分学生非常活跃,但上课易注意力不集中,有少数学生不上进,思维不紧跟老师。要在本期获得更加理想成绩,老师和学生都要付出努力,多找能调动学生学习积极性的方法,培养能力,同时面向全体学生使每个不同的学生都得到不同的发展。
?二》培优转差措施
利用周一、周四补差,周二培优,教师对各种情况的同学进行辅导、提高,“因材施教、对症下药”,根据学生的素质采取相应的方法辅导。具体方法如下:
1.课上差生板演,中等生订正,优等生解决难题。
2.安排座位时坚持“好差同桌”结为学习对子。即“兵教兵”。
3.课堂练习分成三个层次:第一层“必做题”—基础题,第二层:“选做题”—中等题,第三层“思考题”--拓广题。满足不同层次学生的需要。
4.培优补差过程必须优化备课,功在课前,效在课上,成果巩固在课后培优。培优补差尽可能“耗费最少的必要时间和必要精力”。备好学生、备好教材、备好练习,才能上好课,才能保证培优补差的效果。要精编习题、习题教学要有四度。习题设计(或选编习题)要有梯度,紧扣重点、难点、疑点和热点,面向大多数学生,符合学生的认知规律,有利于巩固“双基”,有利于启发学生思维;习题讲评要增加信息程度,围绕重点,增加强度,引到学生高度注意,有利于学生学会解答;解答习题要有多角度,一题多解,一题多变,多题一解,扩展思路,培养学生思维的灵活性,培养学生思维的广阔性和变通性;解题训练要讲精度,精选构思巧妙,新颖灵活的典型题,有代表性和针对性的题,练不在数量而在质量,训练要有多样化。
三、教材分析
第十六章 二次根式:本章的主要内容包括:二次根式的的概念,性质,加、减、乘、除及混合运算。第一节是二次根式的定义,第二节、第三节是二次根式的乘除与加减。
第十七章 勾股定理:直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余, 30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。
第十八章 平行四边形:它是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形、梯形等特殊四边形的用处更多。本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究。
第十九章 一次函数 :要求掌握一次函数的定义和性质,能够解决生活中的问题。第一节是函数的定义、图像,第二节是二次函数的定义,图像与性质,以及它与方程、不等式的关系。
第二十章 数据的分析 : 本章主要研究平均数(主要是加权平均数)、中位数、众数以及方差等统计量的统计意义。20.1节是研究代表数据集中趋势的统计量:平均数、中位数和众数。20.2节是研究刻画数据波动程度的统计量:方差。
每章节都配有数学活动、小结、复习题则它是对本章知识的巩固与提高。
四、教材目标及要求
1、态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。
2、知识与技能:理解二次根式的的概念,性质,并利用其性质解决一些实际问题;会用勾股定理和逆定理解决实际问题;掌握各类四边形的定义、性质与判定,并能计算和论证实际问题;掌握一次函数的定义和性质,能够解决生活中的问题;掌握简单的描述数据的方法。
3、过程与方法:通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。围绕初中数学教材、数学学科“基本要求”进行知识梳理,围绕初中数学“六大块”主要内容进行专题复习,适时的进行分层教学,面向全体学生、培养全体学生、发展全体学生。
五、本学教学重点与难点
本学期重点是一次函数的定义和性质、平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称,一次函数的应用。
六、教法和学法指导方案
教法(1)指导学生学会预习的能力从而能带着问题听课.(2)课堂上学生会根据问题情境创设自己的思维能力(3)指导学生有效的有效的训练和与创新.(4)不要干预学生的思维,要正确引导发现问题解决问题的好习惯。
学法:(1)学习能力的指导 包括观察力、记忆力、思维力、想象力、注意力以及自学、表达等能力的培养.(2).应考方法的指导 教育学生树立信心,克服怯场心理,端正考试观。(3)良好学习心理的指导 教育学生学习时要专注,不受外界的干扰;要耐心仔细,独立思考,不抄袭他人作业;要学会分析学习的困难,克服自卑感和骄傲情绪。
对不同层次学生的数学学习能力的培养提出不同的要求;根据不同学习能力结合数学教学采取多种方法进行培养;根据个别差异因材施教,培养数学学习能力,采取小步子、多指导训练的方式进行;通过课外活动和参加社会实践,促进数学学习能力的发展.
总之,教法和学法指导方案,要力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,教师指导与学生探求结合,统一指导与个别指导结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法.
七、教学措施:
(1)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。
(2)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。
(3)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。
(4)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。
(5)积极参加继续教育与教研听课,并与与其它老师沟通,加强教研教改,提高教学水平。
(6)经常听取学生良好的合理化建议。
(7)以“两头”带“中间”战略思想不变。
(8)深化两极生的辅导。
八、课时分配:
本书供义务教育八年级下学期使用,全书共需约62课时,具体分配如下:
第十六章 二次根式 约9课时
第十七章 勾股定理 约9课时
第十八章 平行四边形 约15课时
第十九章 一次函数 约17课时
第二十章 数据的分析 约12课时
八年级下册数学教案篇2
一、学习目标:
让学生了解多项式公因式的意义,初步会用提公因式法分解因式
二、重点难点
重点:能观察出多项式的公因式,并根据分配律把公因式提出来
难点:让学生识别多项式的公因式.
三、合作学习:
公因式与提公因式法分解因式的概念.
三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)
既ma+mb+mc = m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
四、精讲精练
例1、将下列各式分解因式:
(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3) a(x-3)+2b(x-3)
通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.
首先找各项系数的____________________,如8和12的公约数是4.
其次找各项中含有的.相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的
课堂练习
1.写出下列多项式各项的公因式.
(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72 (2)a2b-5ab
(3)4m3-6m2 (4)a2b-5ab+9b
(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2
五、小结:
总结出找公因式的一般步骤.:
首先找各项系数的大公约数,
其次找各项中含有的相同的字母,相同字母的指数取次数最小的
注意:(a-b)2=(b-a)2
六、作业
1、教科书习题
2、已知2x-y=1/3,xy=2,求2x4y3-x3y4 3、(-2)2012+(-2)2013
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
八年级下册数学教案篇3
教学内容:教科书练习二十三第12~16题。
教学目标:
1. 让学生进一步学会用连除两步计算解决问题。
2、通过解决具体问题,让学生获得一些用除法计算解决问题的 活动经验,感受数学在日常生活中的`作用教学过程:
一、基本联系。
1.听算。
2.p104 13题 生独立解决 指名订正 师:你是怎么想的?还有其他方法吗?
2*7/7=2元。
二、指导练习。
1. p104 12题。
师:观察题目,你知道了那些数学信息?同桌说,指名说
师:能直接用32和4元角比较吗?为什么?
师:你准备先算什么,怎么算,再算什么?又怎么算?
独立列式,指名板演。指名评价。
师:还有其他方法吗?你是怎么想的?
指名说,指名评价,鼓励。
师:通过这道题,你发现了什么?
2. p105 14题。
师:观察题目,你知道了那些数学信息?同桌说,指名说
师强调:图中隐含了一个条件,是什么?
师:你准备先算什么,怎么算,再算什么?又怎么算?
独立列式,指名板演。指名评价。
师:还有其他方法吗?
师:通过这道题,你明白了什么?
三、集中练习。
1. p102 15题。
让生自己独立独题、审题、分析,列式解答。
师:图中隐含了一个条件,是什么?
师巡视,辅导差生,指名板演。指名评价。
2. p103 16题。
让生自己独立独题、审题、分析,列式解答,
师:图中隐含了一个条件,是什么?
师巡视,辅导差生,指名板演。指名评价。
四、发展练习。
让生自编一道两步计算的连除应用题。
同桌说,全班说。表扬鼓励。
八年级下册数学教案篇4
教学目标:
1、进一步熟练运用平行四边形、矩形、菱形、正方形的性质和判定方法解决有关问题,清楚平行四边形、特殊平行四边形的特征以及彼此之间的关系。
2、能利用它们的性质和判定进行推理和计算。
3、使学生明确知识体系,提高空间想象能力,掌握基本的推理能力。
教学重点、难点:
重点:掌握特殊平行四边形性质与判定。
难点:能用特殊平行四边形的判定定理和性质定理进行几何证明和计算。
教学过程:
一、梳理知识:
1.特殊平行四边形的性质.
1)如图所示:在矩形abcd中,对角线ac、bd相交于o点,已知ab=3cm,ac=5cm
则bc=_____cm,△boc的周长=_____cm
2)如图所示:在菱形abcd中,对角线ac、bd相交于o点,已知ab=5cm,ac=6cm,
则你能求出哪些线段的长度?
3)如图所示:在正方形abcd中,对角线ac、bd相交于o点,已知oa=3cm,
则ab=_____cm,△boc的周长=_______cm.
小结:特殊平行四边形的性质(ppt呈现)
2.特殊平行四边形的判定.
要使平行四边形abcd成为矩形,需要增加的条件________.
要使平行四边形abcd成为菱形,需要增加的条件________.
要使矩形abcd成为正方形,需要增加的条件________.
要使菱形abcd成为正方形,需要增加的'条件________.
小结:特殊平行四边形的判定(ppt呈现)
二、深化提高:
1.已知:如图,在△abc中,ab=ac,ad⊥bc,垂足为点d,an是△abc外角∠cam的平分线,ce⊥an,垂足为点e,
(1)求证:四边形adce为矩形;
(2)当△abc满足什么条件时,
四边形adce是一个正方形?并给出证明.
2.如图,矩形abcd的对角线ac、bd交于点o,
过点d作dp∥oc,过c点作cp∥do,交dp于点p,
试判断四边形codp的形状.
变式1:如果题目中的矩形变为菱形,(图一)结论应变为什么?
变式2:如果题目中的矩形变为正方形,(图二)结论又应变为什么?
3.如图,在中,是边的中点,分别是及其延长线上的点,.
(1)求证:.
(2)请连结,试判断四边形的形状,并说明理由.
(3)若四边形是菱形,判断的形状。
三、拓展提高
1.如图,以△abc的三边为边在bc的同侧分别作三个等边三角形,即△abd、
△bce、△acf,
(1)四边形adef是什么四边形?并说明理由
(2)当△abc满足什么条件时,四边形adef是菱形?
(3)当△abc满足什么条件时,以a、d、e、f为顶点的四边形不存在.
2.如图,已知⊿abc是等腰三角形,顶角∠bac=,(<60°)d是bc边上的一点,连接ad,线段ad绕点a顺时针旋转到ae,过点e作bc的平行线,交ab于点f,连接de,be,df.
(1)求证:be=cd;
(2)若ad⊥bc,试判断四边形bdfe的形状,并给出证明,
四、课堂小结
五、作业
1.如图,在正方形abcd中,p为对角线bd上一点,
pe⊥bc,垂足为e,pf⊥cd,垂足为f。
求证:ef=ap
2.如图,正方形abcd中,e是对角线bd上的点,且be=ab,
ef⊥bd,交cd于点f,de=2.5cm,求cf的长。
3.如图,四边形abcd是菱形,对角线ac=8cm,bd=6cm,
dh⊥ab于h,求:dh的长。
八年级下册数学教案篇5
学习目标
1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系并能找出变化规律。
2、由坐标的变化探索新旧图形之间的变化。
重点
1、 作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。
2、 根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。
难点
体会极坐标和直角坐标思想,并能解决一些简单的问题
学习过程(导入、探究新知、即时练习、小结、达标检测、作业)
第一课时
学习过程:
一、旧知回顾:
1、平面直角坐标系定义:在平面内,两条____________且有公共_________的数轴组成平面直角坐标系。
2、坐标平面内点的坐标的表示方法____________。
3、各象限点的坐标的特征:
二、新知检索:
1、在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),
(3,0),(4,-2), (0,0)并用线段依次连接,观察形成了什么图形
三、典例分析
例1、
(1) 将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?
(2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢?
例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化?
(2)将鱼的顶点的横坐标保持不变,纵坐标分别变为原来的1/2画出图形,分析所得图形与原来图形相比有什么变化?
四、题组训练
1、在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案。
(1)这四个点的纵坐标保持不变,横坐标变成原来的1/2,将所得的四个点用线段依次连接起来,所得图案与原来图案相比有什么变化?
(2)纵、横分别加3呢?
(3)纵、横分别变成原来的2倍呢?
归纳:图形坐标变化规律
1、 平移规律:2、图形伸长与压缩:
第二课时
一、旧知回顾:
1、轴对称图形定义:如果一个图形沿着 对折后两部分完全重合,这样的图形叫做轴对称图形。
中心对称图形定义:在同一平面内,如果把一个图形绕某一点旋转 ,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形
二、新知检索:
1、如图,左边的鱼与右边的鱼关于y轴对称。
1、左边的鱼能由右边的鱼通过平移、压缩或拉伸而得到吗?
2、各个对应顶点的坐标有怎样的关系?
3、如果将图中右边的鱼沿x轴正方向平移1个单位长度,为保持整个图形关于y轴对称,那么左边的鱼各个顶点的坐标将发生怎样的变化?
三、典例分析,如图所示,
1、右图的鱼是通过什么样的变换得到 左图的鱼的。
2、如果将右边的鱼的横坐标保持不变,纵坐标分别变为原来的1倍,画出图形,得到的鱼与原来的鱼有什么样的位置关系。
3、如果将右边的鱼的纵、横坐标都分别变为原来的1倍,得到的鱼与原来的鱼有什么样的位置关系
四、题组练习
1、将坐标作如下变化时,图形将怎样变化?
① (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)
④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)
2、如图,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形状、大小完全一样的蝴蝶,并写出第二象限中蝴蝶各个顶点的坐标。
3、 如图,作字母m关于y轴的轴对称图形,并写出所得图形相应各端点的坐标。
4、 描出下图中枫叶图案关于x轴的轴对称图形的简图。
学习笔记
八年级下册数学教案篇6
一、目标要求
1、理解掌握分式的四则混合运算的顺序。
2、能正确熟练地进行分式的加、减、乘、除混合运算。
二、重点难点
重点:分式的加、减、乘、除混合运算的顺序。
难点:分式的.加、减、乘、除混合运算。
分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的。
三、解题方法指导
?例1】计算:(1)[++(+)]·;
(2)(x-y-)(x+y-)÷[3(x+y)-]。
分析:分式的四则混合运算要注意运算顺序及括号的关系。
解:(1)原式=[++]·=[++]·=·==。
(2)原式=·÷=··=y-x。
?例2】计算:(1)(-+)·(a3-b3);
(2)(-)÷。
解:(1)原式=-+=-+ab
=a2+ab+b2-(a2-b2)-ab
=a2+ab+b2-a2+b2-ab=2b2。
(2)原式=[-]·=-=-====。
说明:分式的加、减、乘、除混合运算注意以下几点:
(1)一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便。
(2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时备用,可避免运算烦琐。
(3)注意括号的“添”或“去”、“变大”与“变小”。
(4)结果要化为最简分式。
四、激活思维训练
▲知识点:求分式的值
?例】已知x+=3,求下列各式的值:
八年级下册数学教案6篇相关文章: